Устройство машины постоянного тока назначение основных частей

Устройство машин постоянного тока

Устройство статора.

Машина постоянного тока состоит из двух основных частей: неподвижной – статора и вращающейся – ротора, называемого в машинах постоянного тока якорем. Эскиз машины постоянного тока показан на рис. 1.1, а общий вид с разрезом — на рис. 1.2.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частей

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частей

Статор состоит из станины 1, главных полюсов 2, дополнительных полюсов 3, подшипниковых щитов 4 и щеточной траверсы со щетками 6.

Станина имеет кольцевую форму и изготовляется из стального литья или стального листового проката. Она составляет основу всей машины и, кроме того, выполняет функцию магнитопровода.

Главные полюсы служат для создания постоянного во времени и неподвижного в пространстве магнитного поля. С этой целью по обмотке полюсов пропускается постоянный ток, называемый током возбуждения (в машинах малой мощности в качестве полюсов могут использоваться постоянные магниты).

Дополнительные полюсы устанавливаются между главными и служат для улучшения условий коммутации.
Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники и укрепляется щеточная траверса, которая с целью регулирования может поворачиваться. На щеточной траверсе закреплены пальцы, которые электрически изолированы от траверсы. На пальцах установлены щеткодержатели со щетками, изготовленными из графита или смеси графита с медью.

Устройство якоря.

Вращающаяся часть машин – якорь 9 (рис. 1.1, 1.2, а, б) состоит из сердечника 7, обмотки 8 и коллектора 5.

Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.

Коллектор (рис. 1.3) набран из медных пластин клинообразной формы, изолированных друг от друга, и корпуса 3миканитовыми прокладками 2, образующими в сборе цилиндр, который крепится на валу якоря.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРис. 1.3

Источник

Устройство и принцип действия машин постоянного тока

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частей

Машина постоянного тока представляет собой достаточно сложный механизм, который четко должен выполнять свои функции. Для того чтобы она всегда работала стабильно, необходимо, чтобы каждая мелкая деталь идеально выполняла своё предназначение. В этом случае всё вместе будет представлять единый целостный механизм, спокойно выполняющий главную задачу.

Устройство всей машины

В зависимости от видов машин постоянного тока схема может немного меняться, но в целом она универсальна. В устройстве обязательно находятся:

Обязательно нужно четко понимать устройство машин постоянного тока, чтобы правильно их эксплуатировать, а также в случае необходимости произвести ремонт.

Устройство главных полюсов↑

Главный полюс представляет собой сердечник, состоящий из листов специальной электротехнической стали. На него в определенном порядке насаживаются катушки с последовательной и параллельной обмоткой. Основной функцией данной детали становится образование магнитного поля. Также, имеются такие детали, как наконечник для выравнивания поля.

Детали

Если все эти детали хорошо работают, то в результате образуется магнитное поле. Принцип действия машин постоянного тока не обходится без него.

Для создания магнитного поля и его надежности также используются дополнительные полюса. Они изготавливаются по тому же принципу, но немного проще.

Устройство катушек↑

Устройство сердечника и якоря↑

Якорь представляет собой центральную вращающую часть, которая задаёт движение всему агрегату. Сердечник также является центром всего якоря, на котором в дальнейшем будет находиться обмотка и крепится другие детали.

Внешне он напоминает цилиндр, но вовсе не является простой цельной фигурой, скорее – это наборной элемент. На центральную ось набираются кольца или сегменты листовой стали, которые чередуются между собой в определенной направленности. Основным отличием является тот факт, что на внешней их части присутствует огромное количество специальных пазов, которые обеспечивают дальнейшее крепление. В конце они фиксируются с коллектором и становятся единым целым с ним, образуя замкнутую обмотку.

Устройство якорных катушек↑

Якорные катушки иными словами называют полукатушками. Обусловлено это небольшим количеством витков (от двух до шести). Также, они имеют маленькую толщину. Основное предназначение и принцип работы их схож с обычными катушками, однако есть и некоторые отличия.

В первую очередь – это двойная головка, на которой отсутствуют выводные концы. В якоре они соединяются с коллекторными пластинами, поэтому конструкция устройства довольно необычная. Катушки могут состоять из нескольких секций, каждая из которых соединяется с коллектором при помощи припаивания.

Устройство коллектора↑

Коллектор по внешнему виду напоминает небольшой цилиндр. Он сделан из меди. Между слоями металла располагается слюда или миканит. В зависимости от необходимой мощности машины может меняться и сам состав материалов коллектора.

К этому цилиндру в дальнейшем крепятся щетки, а также обмотка различной полярности. Основная сложность в его конструкции заключается в том, что это не цельный цилиндр, а собранное особым образом устройство. Данную деталь формируют огромное количество клиновидных медных пластин. Между собой они не должны соприкасаться, поэтому обязательно имеются прослойки и прокладки из другого материала.

Готовый цилиндр надежно крепится на валу якоря при помощи специального болта и становится центром всей машины, преобразующей переменный ток в постоянный. Он может быть практически любого размера, но от этого будет изменяться мощность всего устройства.

Устройство щеткодержателей↑

Держатели для щеток обеспечивают их плотное прижатие и идеальное движение. Именно они делают так, чтобы контакты не тёрлись с коллектором. Обязательно просчитывается так, чтобы относительно полюсов машины щетки не меняли свое положение. Они максимально прочно соприкасаются с коллектором, благодаря пружинам, имеющимся в держателях. Также, обеспечивается вращение для идеальной работы.

В зависимости от конкретной машины, держатели могут быть разными по форме и материалам. Однако принцип действия их остается неизменным в любом случае.

Устройство щеток↑

Сами щетки представляют собой прямоугольные бруски. Они находятся на внешней стороне устройства и их легко можно увидеть, не разбирая машину. Иногда, в случае возникновения неисправности, именно тут возникает само искрение, символизирующее о необходимости принимать меры. Основными материалами, из которых изготавливаются щётки, являются графит, кокс, а также некоторые другие компоненты.

Принцип действия↑

Принцип действия машин постоянного тока непосредственно соединен с понятием назначения. Подобные технологии применяются, как в электродвигателях, так и в генераторах. В зависимости от мощности и характеристик их можно использовать в любых отраслях, от промышленности до различных автоматических систем.

Подобные двигатели достаточно дороги и сложны, поэтому они пока не вошли в широкое обращение и используются только лишь при необходимости. Особую популярность такие машины обрели в натуральном хозяйстве, в любых передвижных установках, а также выступают в качестве источника энергии, если её тяжело получить другим способом.

История

У подобного устройства достаточно богатая история. Еще в 19 веке, в 1821 году подобная идея появилась у Фарадея, который и начал ее продвигать. Первый же двигатель был создан русским ученым Якоби. Он же и старался его развивать.

В начале 20 века огромное количество ученый пробовали усовершенствовать данную машину и увеличивать её мощность. Это получалось все лучше и лучше с каждым годом. Единственной проблемой оставалось искрение и ненадежность, но затем и она снялась с улучшением коммутации.

Принцип

Работу двигателя можно объяснить достаточно легко. В обмотке возбуждения, которая надежно соединяется с полюсами, начинает образовываться ток. За счёт стабильного вращения и одного направления ЭДС он становится постоянным. Когда постепенно проводники перемещаются от одного полюса к другому, ЭДС меняет знак своей полярности. Но количество проводников неизменно, а значит, и сила тока остается постоянной по своей величине и характеристикам.

Сердцевиной для выполнения подобных работ становится коллектор. Машиной постоянного тока фактически можно назвать абсолютно любую технику, которая имеет коллектор, якорь с обмоткой, а также внешнюю электрическую цепь. В результате всё это даёт возможность преобразовывать переменный ток в постоянный. В нынешнее время присутствует огромное количество разнообразных машин, которые различаются по мощности, размерам и материалам, однако основа у них одна, начиная с 19 века, которая была открыта Фарадеем.

Источник

Машины постоянного тока устройство и принцип действия

В статье рассмотрено устройство простейшей машины постоянного тока, описан ее принцип действия. Дано определение принципа обратимости электрических машин и электромагнитной мощности.

Устройство простейшей машины

На рисунке 1 представлена простейшая машина постоянного тока, а на рисунке 2 дано схематическое изображение этой машины в осевом направлении. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор изображенной на рисунке 1 простейшей машины имеет два полюса 1 (ярмо индуктора на рисунке 1 не показано).

Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря 2 и коллектора 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рисунке 1 и рисунке 2 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор наложены две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Режим генератора

Рассмотрим сначала работу машины в режиме генератора.

Рисунок 2. Работа простейшей машины постоянного тока в режиме генератора (а) и двигателя (б)

Предположим, что якорь машины (рисунки 1 и 2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с., направление которой может быть определено по правилу правой руки (рисунок 3, а) и показано на рисунках 1 и 2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения.

Рисунок 3. Правила правой (а) и левой (б) руки

Значения индуктируемой в проводнике обмотки якоря э. д. с.

где B – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; l – активная длина проводника, то есть та длина, на протяжении которой он расположен в магнитном поле; v – линейная скорость движения проводника.

В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с., которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины

Рисунок 1. Простейшая машина постоянного тока
Eа = 2 × eпр = 2 × B × l × v.(1)

Э. д. с. Eа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции B вдоль воздушного зазора (рисунок 4, а).

Частота э. д. с. f в двухполюсной машине равна скорости вращения якоря n, выраженной в оборотах в секунду:

а в общем случае, когда машина имеет p пар полюсов с чередующейся полярностью,

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рисунок 4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рисунок 1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Рисунок 4. Кривые э. д. с. и тока простейшей машины в якоре (а) и во внешней цепи (б)

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4, а, получим форму кривой тока и напряжения внешней цепи (рисунок 4, б). Образуемый во внешней цепи пульсирующий по значению ток малопригоден для практических целей. Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор. Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.

Напряжение постоянного тока на зажимах якоря генератора будет меньше Eа на величину падения напряжения в сопротивлении обмотки якоря rа:

Проводники обмотки якоря Iа с током находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рисунок 2, а)

Mэм = Fпр × Dа = B × l × Dа × Iа,(5)

где Dа – диаметр якоря. Как видно из рисунка 2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.

Режим двигателя

Рассматриваемая простейшая машина может работать также двигателем, если обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fпр и возникнет электромагнитный момент Mэм. Величины Fпр и Mэм, как и для генератора, определяются равенствами (4) и (5). При достаточном значении Mэм якорь машины придет во вращение и будет развивать механическую мощность. Момент Mэм при этом является движущим и действует в направлении вращения.

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве инвертора тока.

Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Eа, значение которой определяется равенством (1).

Направление этой э. д. с. в двигателе (рисунок 2, б) такое же, как и в генераторе (рисунок 2, а). Таким образом, в двигателе э. д. с. якоря Eа направлена против тока Iа и приложенного к зажимам якоря напряжения Uа. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.

Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Eа и падением напряжения в обмотке якоря:

Из сравнения равенств (3) и (6) видно, что в генераторе Uа Eа.

Принцип обратимости

Из изложенного выше следует, что каждая машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.

Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.

Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.

Аналогичным образом может происходить изменение режима работы также в машинах переменного тока.

Преобразование энергии

На рисунке 5 показаны направления действия механических и электрических величин в якоре генератора и двигателя постоянного тока.

Рисунок 5. Направление э. д. с., тока и моментов в генераторе (а) и двигателе (б) постоянного тока

Согласно первому закону Ньютона в применении к вращающемуся телу, действующие на это тело движущие и тормозные вращающие моменты уравновешивают друг друга. Поэтому в генераторе при установившемся режиме работы электромагнитный момент

где Mв – момент на валу генератора, развиваемый первичным двигателем, Mтр – момент сил трения в подшипниках, о воздух и на коллекторе электрической машины, Mс – тормозной момент, вызываемый потерями на гистерезис и вихревые токи в сердечнике якоря. Эти потери мощности появляются в результате вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом электромагнитные силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения.

В двигателе при установившемся режиме работы

Mэм = Mв + Mтр + Mс,(7б)

где Mв – тормозной момент на валу двигателя, развиваемый рабочей машиной (станок, насос и т. п.).

В генераторе Mэм является тормозным, а в двигателе – вращающим моментом, причем в обоих случаях Mв и Mэм противоположны по направлению.

Развиваемая электромагнитным моментом Mэм мощность Pэм называется электромагнитной мощностью и равна

представляет собой угловую скорость вращения.

Подставим в выражение (8) значение Mэм и Ω из равенств (5) и (9) и учтем, что линейная скорость на окружности якоря

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частей

или на основании выражения (1)

В обмотке якоря под действием э. д. с. Eа и тока Iа развивается внутренняя электрическая мощность якоря

Согласно равенствам (10) и (11), Pэм = Pа, т. е. внутренняя электрическая мощность якоря равна электромагнитной мощности, развиваемой электромагнитным моментом, что отражает процесс преобразования механической энергии в электрическую в генераторе и обратный процесс в двигателе.

Умножим соотношения (3) и (6) на Iа. Тогда для генератора будем иметь

Pэм = 2 × B × l × Dа × Iа × π × n = 2 × B × l × v × Iа
Uа × Iа = Eа × IаIа 2 × rа(12)
Uа × Iа = Eа × Iа + Iа 2 × rа.(13)

Левые части этих выражений представляют собой электрические мощности на зажимах якоря, первые члены правых частей – электромагнитную мощность якоря и последние члены – электрические потери мощности в якоре.

Хотя приведенные соотношения получены для простейшей машины постоянного тока (рисунок 1), они действительны и в общем случае при более сложной обмотке якоря, так как э. д. с. и моменты отдельных проводников складываются. Эти соотношения являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Согласно им, механическая мощность, развиваемая на валу генератора первичным двигателем, за вычетом механических и магнитных потерь, превращается в электрическую мощность в обмотке якоря, а электрическая мощность за вычетом потерь в этой обмотке выдается во внешнюю цепь. В двигателе электрическая мощность, подводимая к якорю из внешней цепи, частично расходуется на потери в обмотке якоря, а остальная часть этой мощности превращается в мощность электромагнитного поля и последняя – в механическую мощность, которая за вычетом потерь на трение и потерь в стали якоря передается рабочей машине.

Установленные выше применимо к машине постоянного тока общие закономерности превращения энергии в равной степени относятся также к машинам переменного тока.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

Схемы подключения наглядно видно на рисунке 2.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРисунок 3. Ротор с тремя обмотками Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейРис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейПримеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Устройство машины постоянного тока назначение основных частей. Смотреть фото Устройство машины постоянного тока назначение основных частей. Смотреть картинку Устройство машины постоянного тока назначение основных частей. Картинка про Устройство машины постоянного тока назначение основных частей. Фото Устройство машины постоянного тока назначение основных частейПример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

Преимущества и недостатки

К достоинствам относится:

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *