Что такое равенство в математике 3 класс правило
Числовые равенства, свойства числовых равенств
После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.
Что такое числовое равенство
Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.
Свойства числовых равенств
Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.
Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.
Основные свойства числовых равенств
Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:
Прочие важные свойства числовых равенств
Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:
Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:
Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;
Завершим данную статью, собрав для наглядности все рассмотренные свойства:
Что такое числовые выражения, равенства, неравенства и уравнения
Выражение
Числовое выражение — это числа, соединённые знаками арифметических действий: сложение, вычитание, умножение и деление.
Найти значение числового выражения — это значит выполнить все указанные арифметические действия и получить конкретное число.
Кроме арифметических действий выражения могут содержать скобки, которые влияют на порядок действий при решении выражения.
Пример 1:
Равенство
Равенства — это числа или выражения, соединённые знаком = (равно).
Равенство считается верным, если числа или числовые выражения слева и справа от знака =, имеют равное значение.
Равенство считается неверным, если числа или числовые выражения слева и справа от знака =, не равны (≠).
При решении равенств соблюдается следующий порядок действий:
Пример 2:
1) 5 = 7 — равенство неверно, так как 5 ≠ 7.
2) 36 : 2 = 6 • 3 — равенство верно, так как:
3) 48 + 9 = 54 — 1 — равенство неверно, так как:
Неравенство
Пример 3:
1) 5 > 7 — неравенство неверно, так как 5
3) 4 + 5 • 6 > (4 + 5) • 6 — неравенство неверно, так как:
Уравнение
Уравнение — это равенство, которое содержит неизвестное число, обозначенное какой-либо латинской буквой: x, y, a, b, z, d и т.д.
Корень уравнения — это число, при подставлении котрого вместо буквы в равенство делает это равенство верным.
Решить уравнение — это значит найти все возможные корни уравнения.
Порядок и правила решения уравнений зависят от того, к какому типу они относятся:
Равенства и неравенства. 3-й класс
Класс: 3
Презентация к уроку
Тип урока: открытие новых знаний.
Технология: технология развития критического мышления через чтение и письмо, игровая технология.
Цели: Расширить знания учащихся о равенствах и неравенствах, познакомить с понятием верных и неверных равенств и неравенств.
Дидактическая задача: Организовать совместную, самостоятельную деятельность учащихся по изучению нового материала.
Задачи урока:
Оборудование:
Ход урока
I. Организационный момент.
И так, друзья, внимание.
Ведь прозвенел звонок
Садитесь поудобнее,
Начнем скорей урок!
II. Устный счет.
– Сегодня мы отправимся с вами в гости. Прослушав стихотворение, вы сможете назвать имя хозяйки. (Чтение стихотворение ученицей)
В веках математика овеяна славой,
Светило всех земных светил.
Ее царицей величавой
Недаром Гаусс окрестил.
Мы славим разум человека,
Дела его волшебных рук,
Надежду нынешнего века,
Царицу всех земных наук.
– И так, нас ждет Математика. В её царстве много княжеств, но сегодня мы посетим одно из них (слайд 4)
– Название княжества вы узнаете, решив примеры и расставив ответы в порядке возрастания. (Высказывание)
7200 : 90 = 80 | С | 280 : 70 = 4 | И |
5400 : 9 = 600 | Ы | 3500 : 70 = 50 | З |
2700 : 300 = 9 | В | 4900 : 700 = 7 | А |
4800 : 80 = 60 | А | 1600 : 40 = 40 | Ы |
560 : 8 = 70 | К | 1800 : 600 = 3 | Е |
4200 : 6 = 700 | В | 350 : 70 = 5 | Н |
– Давайте вспомним, что такое высказывание? (Утверждение)
– Каким может быть высказывание? (Верным или неверным)
– Мы сегодня с вами будем работать с математическими высказываниями. Что к ним относится? (выражение, равенства, неравенства, уравнения)
III. Стадия 1. ВЫЗОВ. Подготовка к изучению нового.
(слайд 5 см. примечание)
– Княжна Высказывание предлагае вам первое испытание.
– Перед вами карточки. Найдите лишнюю карточку, покажите (а + 6 – 45 * 2).
– Почему она лишняя? (Выражение)
– Является ли выражение законченным утверждением? (Нет, не является, т.к. оно не доведено до логического завершения)
7 * 9 = 63 | а + 8 = 27 | 100 : 4 + а = 90 |
а + 6 > 45 * 2 | а + 6 – 45 * 2 | 95 4 |
– Разложите оставшиеся карточки на группы. (Равенства и неравенства)
7 * 9 = 63 | а + 6 > 45 * 2 |
а + 8 = 27 | 95 4 |
– А что такое равенство и неравенство, можно ли их назвать высказыванием?
– Назовите верные равенства.
– Как по-другому назвать верные равенства? (истинные)
– О каких равенствах нельзя сказать, что они истинные? (с переменной)
– Математика постоянно учит нас доказывать истинность или ложность наших высказываний.
IV. Сообщение цели урока.
– И сегодня мы должны узнать, что такое равенство и неравенство и научиться определять их истинность и ложность.
– Перед вами высказывания. Прочитайте их внимательно. Если вы считаете, его верным, то поставьте в первом столбике «+», если нет – «–».
До чтения | После чтения |
Равенства – это два выражения, соединенных знаком «=» | |
Выражения могут быть числовыми и буквенными. | |
Если два выражения числовые, то равенство является высказыванием. | |
Числовые равенства могут быть истинными или ложными. | |
6 * 3 = 18 – верное числовое равенство | |
16 : 3 = 8 – неверное числовое равенство | |
Два выражения, соединенных знаком «>» или « b | |
8 + 12 + 20 | а – b |
8 + 12 > 20 | а + b = с |
20 = 8 + 12 | а + b * с |
– Сколько равенств подчеркнули? Проверим.
– Что помогло выполнить задание? (знаки «=», «>», « 20.05.2012
Понятие равенства, знак равенства, связанные определения.
В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.
Навигация по странице.
Что такое равенство?
Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».
Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.
Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные. В качестве примера приведем два равных квадрата и
. Отличающиеся объекты, в свою очередь, называют неравными.
Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.
Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.
Запись равенств, знак равно
Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.
Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.
Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами.
Верные и неверные равенства
Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства. Разберемся с этим на примерах.
Свойства равенств
Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.
Двойные, тройные равенства и т.д.
В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.
Понятие равенства, знак равенства, связанные определения
Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.
Что такое равенство
Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.
Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и
. А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.
Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и
. Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.
Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.
Запись равенств, знак равно
Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).
Верные и неверные равенства
Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.
Свойства равенств
Запишем три основных свойства равенств:
Буквенно сформулированные свойства запишем так:
Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.
Двойные, тройные и т.д. равенства
При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.
Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.