найдите десятичные эквиваленты чисел представленных в дополнительном коде 00000100 11111001
Обратный и дополнительный коды двоичных чисел
Пример перевода
x1=10101-[x1]пр=010101
x2=-11101-[x2]пр=111101
x3=0,101-[x3]пр=0,101
x4=-0,111-[x4]пр=1,111
2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.
3) Дополнительный код числа, имеет такое же назначение, как и обратный код числа. Формируется по следующим правилам: положительные числа в дополнительном коде выглядят также как и в обратном и в прямом коде, т.е. не изменяются. Отрицательные числа кодируются следующим образом: к обратному коду отрицательного числа (к младшему разряду) добавляется 1, по правилу двоичной арифметики.
Пример перевода
x1=10101-[x1]доп=010101
x2=-11101-[x2]обр=100010+1-[x2]доп=100011
x3=0,101-[x3]доп=0,101
x4=-0,111-[x4]обр=1,000+1-[x4]доп=1,001
Для выявления ошибок при выполнении арифметических операций используются также модифицированные коды: модифицированный прямой; модифицированный обратный; модифицированный дополнительный, для которых под код знака числа отводится два разряда, т.е. “+”=00; ”-”=11. Если в результате выполнения операции в знаковом разряде появляется комбинация 10 или 01 то для машины это признак ошибки, если 00 или 11 то результат верный.
Урок 16
§13. Представление чисел в компьютере
Содержание урока:
САМОЕ ГЛАВНОЕ Вопросы и задания | ||
13.2. Представление вещественных чисел (продолжение) | Материалы к уроку |
САМОЕ ГЛАВНОЕ
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
Cкачать материалы урока
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
Представление чисел в компьютере
Информатика. 10 класса. Босова Л.Л. Оглавление
§13. Представление чисел в компьютере
Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).
Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.
13.1. Представление целых чисел
Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.
И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.
Беззнаковое представление можно использовать только для неотрицательных целых чисел.
Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.
Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:
При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.
Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.
В математике множество целых чисел бесконечно.
Компьютер работает с ограниченным множеством целых чисел.
Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.
В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.
Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).
Рис. 3.5. Реверсивный счётчик
При возрастании показаний счётчика до максимального, например до 999, следующими его состояниями должны быть 1000, 1001, 1002 и т. д. Но для изображения старшей единицы в счётчике не хватает разряда, происходит переполнение разрядной сетки. Поэтому мы увидим 000, 001, 002 и т. д.
1 + 999 = 1000;
2 + 998 = 1000;
3 + 997 = 1000.
С учётом того что единица переполнения теряется, мы, сложив число и код противоположного ему числа, получаем ноль!
Вот ещё несколько примеров:
5-2 = 5 + [-2] = 5 + 998 = 1003;
7-5 = 7 + [-5] = 7 + 995 = 1002.
Для устранения неоднозначности в кольце будем считать половину состояний (0-499) кодами нуля и положительных чисел, а оставшуюся половину (500-999) — кодами отрицательных чисел.
Рассмотрим алгоритм получения дополнительного n-разрядного кода отрицательного числа:
1) модуль числа представить прямым кодом в n двоичных разрядах;
2) значения всех разрядов инвертировать (все нули заменить единицами, а единицы — нулями);
3) к полученному представлению, рассматриваемому как n-разрядное неотрицательное двоичное число, прибавить единицу.
Использование дополнительного кода позволяет свести операцию вычитания чисел к операции поразрядного сложения кодов этих чисел.
Выполним эту операцию в 16-разрядных машинных кодах.
Рассмотрим полученный результат. Это отрицательное число (об этом говорит 1 в знаковом разряде), представленное в дополнительном коде. Перейдём к прямому коду модуля соответствующего числа, по которому сможем восстановить десятичное представление результата.
Прямой код можно получить из дополнительного кода, если применить к нему операцию инвертирования и прибавить единицу.
13.2. Представление вещественных чисел
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Попробуйте обосновать это утверждение.
Вещественные числа записываются в естественной или в экспоненциальной форме.
В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.
Например, длину некоторого отрезка, равного 47,8 см, можно записать так:
Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.
Примеры нормализации чисел:
Диапазон вещественных чисел в памяти компьютера очень широк, но, тем не менее, ограничен. Множество вещественных чисел, которые могут быть представлены в компьютере, конечно.
Поясним это на примере калькулятора, который производит вычисления в десятичной системе счисления. Пусть это будет калькулятор с десятью знакоместами на дисплее:
• 6 знакомест отводится под мантиссу (одно знакоместо отводится под знак мантиссы, четыре — под цифры мантиссы, одно — под точку, разделяющую целую и дробную части мантиссы);
• одно знакоместо отводится под символ «Е»;
• три знакоместа отводятся под порядок (одно — под знак порядка, два — под цифры порядка).
У калькуляторов первая значащая цифра, с которой и начинается мантисса, изображается перед точкой.
Число 12,34 в таком калькуляторе будет представлено как +1.234Е+01.
Число 12,35 будет представлено как + 1.235Е+01.
Как известно, между числами 12,34 и 12,35 находится бесконечное множество вещественных чисел, например: 12,341; 12,3412; 12,34123 и т. д.
Каждое из этих чисел в нашем калькуляторе будет представлено как + 1.234Е+01. Для последних разрядов у нас просто не хватает знакомест! Аналогичная ситуация имеет место и в компьютерном представлении вещественных чисел, независимо от того, ячейки какой разрядности там использованы.
Получается, что точно мы можем представить в компьютере лишь некоторую конечную часть множества вещественных чисел, а остальные числа — лишь приближённо.
Таким образом, множество вещественных чисел, представляемых в компьютере, дискретно, конечно и ограничено.
САМОЕ ГЛАВНОЕ
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Вопросы и задания
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде: 1) 00000100; 2) 11111001.
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
§ 13. Представление чисел в компьютере
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
1. Представьте в восьмиразрядном формате прямые коды десятичных чисел:
3. Как определяется диапазон представления в компьютере целых чисел без знака? Со знаком?
4. Почему множество целых чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
5. Представьте в восьмиразрядном формате дополнительные коды двоичных чисел:
6. Найдите десятичные эквиваленты чисел, представленных в прямом коде:
1) 00000100; 2) 00001001; 3) 10000011; 4) 10000110.
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде:
1) 00000100; 2) 11111001.
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
Дополнительный код
Все процессоры с ФТ оперируют с числами, представленными в дополнительном коде, что позволяет существенно упростить выполнение арифметических операций.
Положительные целые числа представляются в дополнительном коде точно так же, как в прямом коде. Формирование дополнительного кода отрицательного числа производится по следующему правилу:
значение знакового бита не меняется (равно 1);
все b значащих битов инвертируются (0 заменяются на 1,а 1 – на 0);
к младшему биту полученного числа прибавляется 1 с соблюдением правил сложения двоичных
Результат представляет собой число в дополнительном коде. Правило перевода в дополнительный код не зависит от типа чисел – целые или дробные.
Примеры перевода из прямого кода в дополнительный представлены на рис. 3.8 и 3.9.
а) положительное целое
б) отрицательное целое
формирование дополнительного кода:
инверсия всех битов, кроме знакового: 10010010
добавление 1 к младшему биту: 10010011
Рис. 3. 8. Примеры целых чисел в дополнительном коде
Обратный перевод числа из дополнительного кода в прямой осуществляется точно по тому же правилу.
Приведем пример. Пусть дано число в дополнительном коде: 10010011доп (жирным шрифтом выделен знаковый бит). Формирование прямого кода:
инверсия всех битов, кроме знакового __ > 11101100;
добавление 1 к младшему биту _ > 11101101пр.
Код называется дополнительным, поскольку отрицательное дробное число можно представить как разность между числом 2 (беззнаковым целым) и модулем этого числа, т.е. как дополнение к 2. В качестве примера, получим дополнительный код отрицательного числа _ _0,875, как его дополнения к 2. Модуль этого числа в формате Q3 равен 0,111(2). Вычитая 0,111(2) из числа 2(10) = 10,000(2) имеем результат 1,001(2). Определим дополнительный код числа _ 0,875 по приведенному выше правилу:
_ 0, 875 _ > _ 0,111(2) _ > 1111пр _ > инверсия всех битов, кроме знакового _ >1000 добавление 1 в младшему биту _ > 1001доп. _______
б) отрицательное дробное Формирование дополнительного кода: инверсия всех битов, кроме знакового: 10001110 добавление 1 к младшему биту: 10001111
|